一种旋转机械故障趋势预测的特征提取方法专利登记公告
专利名称:一种旋转机械故障趋势预测的特征提取方法
摘要:本发明涉及一种旋转机械故障趋势预测的特征提取方法,其步骤为:(1)利用远程在线监测诊断中心进行工业现场数据采集,通过布置在旋转机械设备上的多个传感器采集多个通道的振动信号xj(t);(2)根据FastICA算法对振动信号xj(t)进行盲源分离,得到原始独立振动源sj(t)的近似信号源yj(t);(3)对近似信号源yj(t)的向量信号Y进行时频域基于小波包的特征频带分解,提取故障敏感特征频带。本发明由于采用独立成分分析(ICA)处理可以识别出混叠成采集信号的原始的独立信号源,对独立信号源进行基于小波包的特征
专利类型:发明专利
专利号:CN201210123651.0
专利申请(专利权)人:北京信息科技大学
专利发明(设计)人:徐小力;左云波;吴国新;王红军;蒋章雷
主权项:一种旋转机械故障趋势预测的特征提取方法,其包括以下步骤:(1)利用远程在线监测诊断中心进行工业现场数据采集,通过布置在旋转机械设备上的多个传感器采集多个通道的振动信号xj(t),j=1,2,...,n,其中,j为通道个数,n为正整数;(2)根据FastICA算法对振动信号xj(t)进行盲源分离,得到原始独立振动源sj(t)的近似信号源yj(t),其中,j=1,2,...,n;(3)对近似信号源yj(t)的向量信号Y进行时频域基于小波包的特征频带分解,提取故障敏感特征频带。
专利地区:北京
关于上述专利公告申明 : 上述专利公告转载自国家知识产权局网站专利公告栏目,不代表该专利由我公司代理取得,上述专利权利属于专利权人,未经(专利权人)许可,擅自商用是侵权行为。如您希望使用该专利,请搜索专利权人联系方式,获得专利权人的授权许可。